Jeffrey M. Isner, M.D.
Endowed Memorial Lectureship

Distinguished Guest Lecturers

2006 – Douglas Losordo, M.D.
Chief, Cardiovascular Research, Professor of Medicine,
Tufts University School of Medicine
The Microvasculature as a Therapeutic
Target in Ischemic Disease

2007 – Judah Folkman, M.D.
Director, Vascular Biology Program, Children's Hospital;
Julia Dyckman Andrus Professor of Pediatric Surgery,
Harvard Medical School
Angiogenesis Regulators in the
Cardiovascular System

2008 – Eli Keshet, Ph.D.
Woll Brothers and Sisters Chair for Cardiovascular
Research, Professor of Molecular Biology, Hebrew
University, Hadassah Medical Center, Jerusalem
VEGF, Vascular Manipulations and Ischemic
Heart Disease: Challenges and Opportunities

2009 – Jean Bennett, M.D., Ph.D.
F. M. Kirby Professor and Vice Chair of Research
Department of Ophthalmology
University of Pennsylvania
Gene Therapy—Mediated Reversal of
Congenital Blindness

2010 – Patricia A. D’Amore, Ph.D.
Ankeny Scholar of Retinal Molecular Biology
Schepens Eye Research Institute
Professor of Ophthalmology and Pathology
Harvard Medical School
VEGF in the Adult: Implications for
Anti-VEGF Therapies

Previous Distinguished Guest Lecturers, continued

2011 – Maria B. Grant, M.D.
Distinguished Professor of Medicine
Professor of Pharmacology & Therapeutics
University of Florida College of Medicine
The CNS-Bone Marrow Connection: Searching
for the Hidden Treasures for Vascular Repair

2012 – Michael D. Schneider, M.D.,
FMedSci, FAMA, FESC
Head of Cardiovascular Science,
National Heart and Lung Institute
British Heart Foundation Simon Marks Chair
in Regenerative Cardiology
Faculty of Medicine, Imperial College London
Cardiac Muscle Cell Number
as a Therapeutic Target

2013 – George Q. Daley, M.D., Ph.D.
Children's Hospital Boston
Samuel E. Lux IV Professor of Hematology/Oncology
Director, The Stem Cell Transplantation Program
Professor, Harvard Medical School
Stem Cells: Battles, Breakthroughs,
Myths, and Medicines

Charitable gifts may be sent to:

The Jeffrey M. Isner, M.D.
Endowed Memorial Lectureship
Office of Development and Alumni Relations
Tufts University School of Medicine
136 Harrison Avenue
Boston, MA 02111

Or online: medicine.tufts.edu/giving
The Jeffrey M. Isner, M.D. Endowed Memorial Lectureship

The Jeffrey M. Isner, M.D. Endowed Memorial Lectureship is a thought-provoking forum considering the pioneering work of Jeffrey M. Isner, M.D. Annually, the Tufts University medical and biomedical communities hear internationally recognized basic and clinical scientists present angiogenesis-related research linked to tumor growth, diabetic retinopathy, age-related macular degeneration, and other disorders.

The Jeffrey M. Isner, M.D. Endowed Memorial Lectureship is made possible by the Isner Family and The Jeffrey M. Isner Foundation for New Directions in Cardiovascular Research.

Jeffrey M. Isner, M.D. 1947–2001

Jeffrey M. Isner, M.D. played a pioneering role in developing gene therapies for obstructive atherosclerosis and peripheral vascular disease. This work, as well as his groundbreaking studies revealing that endothelial progenitor cells can arise from adult bone marrow, provide the conceptual and scientific underpinnings for several fields of basic and clinical cardiovascular research.

Dr. Isner graduated from Tufts University School of Medicine (TUSM) in 1973 and pursued his residency in internal medicine at St. Elizabeth’s Medical Center, followed by a cardiology fellowship at Georgetown University Hospital. After several years at the NIH Heart, Lung and Blood Institute, Dr. Isner returned to Boston as Professor of Medicine and Pathology at TUSM. In 1988 he became Chief of Cardiovascular Research and Director of the Human Gene Therapy Laboratory at St. Elizabeth’s Medical Center.

Dr. Isner received many awards, including the American Medical Association’s William Beaumont Award in Medicine, and authored 400 research publications before his untimely death at age 53. A caring physician and groundbreaking researcher, Isner was above all a devoted and loving family man.

9TH ANNUAL
Jeffrey M. Isner, M.D. Endowed Memorial Lecture

Ischemia-induced Vascularization: Can Therapy Overcome the Effect of Aging?

Presented by
Gregg L. Semenza, M.D., Ph.D.
C. Michael Armstrong Professor of Pediatrics, Medicine, Oncology, Radiation Oncology, Biological Chemistry, and Genetic Medicine
Johns Hopkins University School of Medicine
Director, Vascular Program
Johns Hopkins Institute for Cell Engineering

Wednesday, November 12, 2014
4–5 p.m.
Behrakis Auditorium
Jaharis Family Center for Biomedical and Nutritional Sciences
150 Harrison Avenue
Boston, MA 02111

Reception to follow

Gregg L. Semenza, M.D., Ph.D.

Dr. Semenza received an A.B. in biology magna cum laude from Harvard College; M.D. and Ph.D. (in genetics) from the University of Pennsylvania; pediatrics residency training at Duke University Medical Center; and post-doctoral training in medical genetics at Johns Hopkins University School of Medicine, where he has spent his entire faculty career. He is currently an American Cancer Society Research Professor and the C. Michael Armstrong Professor at Johns Hopkins with appointments in the Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, Biological Chemistry, and Genetic Medicine; since 2003, he has served as founding director of the Vascular Program in the Institute for Cell Engineering.

Dr. Semenza currently serves on the editorial boards of American Journal of Physiology-Cell Physiology, Antioxidants and Redox Signaling, Journal of Clinical Investigation, Oncogene, and the Proceedings of the National Academy of Sciences. He is editor in chief of the Journal of Molecular Medicine. He has been elected to the Society for Pediatric Research, American Society for Clinical Investigation, Association of American Physicians, Institute of Medicine, and the National Academy of Sciences. He is a recipient of the Canada Gairdner International Award, Stanley J. Korsmeyer Award from the American Society for Clinical Investigation, Lefoulon-Delalande Grand Prix Scientifique from the Institut de France, and the Wiley Prize for Biomedical Sciences. He has published >350 papers that have been cited >54,000 times (h-factor = 114). Dr. Semenza’s laboratory identified hypoxia-inducible factor 1 (HIF-1), a transcriptional activator that allows cells to respond to changes in oxygen availability. The purification of HIF-1 opened the field of oxygen biology to molecular analysis and has revealed major roles for HIF-1 in many evolutionary, developmental, physiological, and pathological processes.